Правильные многогранники

http://polyhedron.boom.ru/ (с мощными рисунками и анимацией)
 

Пирамида Серпинского (самоподобный фрактал) в анимации (галерея фракталов)
Нужно взять обычную пирамиду (тетраэдр), затем вырезать ее середину (октаэдр), в результате чего у нас получается четыре пирамидки. С каждой из них проделать ту же самую операцию и т.д.



Генераторы трехмерных конечно-элементных сеток
Разработаны два типа генератора сеток — генератор тетраэдров и генератор сеток, состоящих преимущественно из гексаэдров (иллюстрируются рисунками в анимации).


Модельные структуры плотной упаковки сферических частиц:
Радикальные полиэдры и тетраэдры триангуляции:

Вращающиеся кольца тетраэдров
Дж.М. Андреас и Р.М. Сталкер независимо друг от друга открыли семейство изгибаемых конечных многогранников с 2n вершинами, 6n ребрами (из которых 2n сдвоенных) и 4n треугольными гранями; n может равняться 6, 8 или любому большему целому числу. Гранями служат грани n тетраэдров, соединенных между собой в циклическом порядке по определенным парам противоположных ребер каждого, так что получается фигура наподобие кольца. При n = 6 эта фигура еще достаточно жесткая, но при n = 8 она уже может изгибаться и выворачиваться до бесконечности, как колечко дыма. Когда n четно, фигура стремится принять симметричную форму; особенно хороша она при n = 10. Когда n нечетно, из-за полного отсутствия симметрии картина становится, пожалуй, еще более захватывающей. При n, большем или равном 22, кольцо может заузливаться.






The Algorithm of the building.(многоранники и их развертки)



Знак Шри Ауробиндо и звезды тетраэдрона


Правильные многогранники


Геометрия тетраэдра (вращающееся кольцо тетраэдров -головоломка)

Правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.
Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр.
Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона. Одним из существенных черт его учения является рассмотрение "идеальных" объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, "идеальные" объекты. Однако и сам Платон, и многие древние математики вкладывали в термин "идеальный" не только смысл "абстрактный", но и смысл "наилучший". В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие  те, которые имеют своими гранями правильные многоугольники.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами
многогранника, а концы ребер — вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т. д. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани — правильные одинаковые многоугольники и все многогранные углы при вершинах равны. Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов. Существует 13 или 14 архимедовых тел (число неточное, поскольку псевдоромбокубоктаэдр иногда не причисляют к этому семейству). Кроме того, имеют равные многогранные углы и правильные грани нескольких типов тела из двух бесконечных семейств - призмы и антипризмы.
Кеплер Иоганн (Kepler I,1571-1630г) – немецкий астроном. Открыл законы движения планет. В 1596 году Кеплер предложил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. ( «Гармония мира» 1619г.)

И.Кеплер предположил, что расстояния между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Результаты его расчётов хорошо согласовались с действительными расстояниями между планетными орбитами

 Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет - именно шесть планет гармонировали с пятью Платоновыми телами.

Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям ("сферам"), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

Другим выдающимся вкладом Кеплера в геометрию многогранников является открытие им двух звездных правильных тел. (Всего их четыре; два других нашел французский математик Луи Пуансон в 1809 г.)

Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и процессов Земли с вышеуказанными фигурами.

   Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

С позиций изучения симметрии, учитывая представление о додекаэдро-икосаэдрическом силовом каркасе Земли как планеты, следует признать, что в этом смысле Земля является живым существом. С душою, которую П.А. Флоренский назвал “пневматосфера”, со свободой воли и разумом.
 

Тетраэдр

(от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь.
 
Развертка тетраэдра

Куб

самый популярный  многогранник из семейства Платоновых тел. Куб или гексаэдр (от греческого hex — шесть и hedra — грань) составлен из 6 квадратов.  Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 270°.

Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl.

Форму  куба имеют кристаллические решётки многих металлов (Li, Na, Cr, Pb, Al, Au, и другие), кристалл алмаза, кристаллическая решётка хлорида цезия  (CsCl).

В 2009 г. должно исполниться 500 лет со времени выхода в свет книги Луки Пачоли «Божественная пропорция», а следовательно, и изобретения Леонардо да Винчи для ее иллюстрации метода жестких ребер.

Отметим, что Леонардо изображал своим способом не только индивидуальные многогранники, но и, например, плотную упаковку кубов. На мой взгляд, этим изображением Леонардо на три века предвосхитил гипотезу о периодическом строении кристаллов, высказанную французскими кристаллографами аббатом Рэнэ-Жюстом Гаюи (1743-1822) и морским офицером Огюстом Бравэ (1811-1863).
Интересно сравнить этот рисунок Леонардо с похожей работой Маурица Эшера, относящейся к 1952 г., «Ячейки кубического пространства».
 

В центре гравюры  «Водопад» расположен  комплекс конструкций поднимающийся на фоне ландшафта с террасами. Вертикальная ось создается двумя мощными башнями, каждая из которых увенчана острогранными  многогранниками (слева - три пересекающиеся куба, а справа также три пересекающихся правильных октаэдра). Маленькие домики примыкают к башням слева и справа в едином комплексе. Слева на первом плане картины изображен маленький садик со странными, необычными подводными растениями. Центральным действием картины является ручей, который падает на колесо и крутит его. Он течет слегка полого вниз и извивается, проходя через башни, при этом он трижды протекает через точку, в которой уже проходил. Абсурдность доходит до нас через "круг" неправильных соединений куба.  В результате невольного восприятия зрительная точка оказывается самой ближней, а самая высокая точка становится самой низкой.
Водопад на картине Маурица Эшера осуществляет то, что мы считаем невозможным - вечное движение.


Октаэдр -

(от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и  12 ребер.
Шестой элемент периодической системы С (углерод) характеризуется структурой октаэдра.Кристаллы алмаза обычно имеют форму октаэдра. Алмаз (от греческого adamas – несокрушимый) – бесцветный или окрашенный кристалл с сильным блеском в виде октаэдра. Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров, ромбододекаэдров, реже — кубов или тетраэдров.
Исторически первой формой огранки, появившейся в середине XIV века, стал «октаэдр». Алмаз «Шах» почти сохранил свой естественный вид. Он имеет форму вытянутого кристалла-октаэдра, массу 88,7 карата и цвет воды с желто-бурым оттенком. В начале XIX века «Шах» оказался в Персии. В 1829 году в ходе беспорядков в Тегеране был убит русский посол, автор комедии «Горе от ума» А. С. Грибоедов, и персидское правительство для разрешения конфликта подарило алмаз Николаю I.

Додекаэдр

(от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник,  составленный из двенадцати равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина  додекаэдра  является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.
Чтобы познать невидимое, смотри внимательно на видимое.

Древняя книга

Правильные многогранники привлекают совершенством своих форм, полной симметричностью. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие — в виде вирусов, простейших микроорганизмов.

 Кристаллы — тела, имеющие многогранную форму. Вот один из примеров таких тел:  кристалл пирита (сернистый колчедан FeS) — природная модель додекаэдра.
 
 Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. Это, в частности, означает, что заразиться полиомиелитом можно только от людей. Кроме того, многие вирусы передаются через переносчиков, роль которых нередко выполняют членистоногие (например, клещи). Такие вирусы могут иметь широкий спектр хозяев, включающий как позвоночных, так и беспозвоночных животных.
Водоросль вольвокс — один из простейших многоклеточных организмов — представляет собой сферическую оболочку, сложенную в основном семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырехугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее, чем с пятью и более, чем с семью) сторонами нет, то пятиугольных клеток всегда ровно на двенадцать больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Это утверждение следует из известной формулы Эйлера.
Фуллерены – одна из форм углерода. Они были открыты при попытке моделировать процессы, происходящие в космосе.  Позже ученым в земных лабораториях удалось синтезировать и исследовать многочисленные производные этих шарообразных молекул. Возникла химия фуллеренов. Некоторые соединения включения в кристаллическую решетку фуллерена С60 оказались «горячими сверхпроводниками» с критической температурой до 117 К. Ведутся попытки создать на основе фуллеренов материалы для зарождающейся молекулярной электроники. Все это интересно и важно. Но фуллерены, как выяснилось, есть и в земных породах. Сейчас с наличием в шунгитах фуллеренов некоторые энтузиасты связывают целебное действие открытых в 1714 г. марциальных вод, которыми лечился Петр Великий. А последние открытия геохимиков заставляют вернуться к проблеме происхождения фуллеренов. Возможно, что новые химические исследования земных фуллеренов приоткроют другие страницы богатой истории планеты Земля!
 
 В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир ,потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна.
На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.
В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи. В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.


Икосаэдр -

(от греческого ico —  шесть и hedra — грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников.
Существует много данных о сравнении структур и процессов Земли с правильными многогранниками.

   Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее  его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра  и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

 Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

   Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.). Нечто похожее наблюдается и в микроструктурах. Например, строение аденовирусов имеет форму икосаэдра  .

В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра . Открытие фуллерена, молекула которого С60 также обладает этим типом симметрии, стимулировало интерес к подобным объектам. Г.Хуберт с сотрудниками (H.Hubert ; Аризонский университет, США) синтезировали кристаллы B6O из смеси B и B2O3, которая выдерживалась при температуре 1700oС и давлении от 4 до 5.5 ГПа в течение 30 мин. Образовавшийся субоксид бора имеет ромбоэдрическую кристаллическую решетку с одним из плоских углов при вершине, равным 63.1o. Это значение очень близко к величине угла 63.4o, необходимого для того, чтобы из 20 тетраэдров можно было составить правильный икосаэдр. "Первичные" икосаэдры способны группироваться в более крупные кластеры: центральный икосаэдр окружен 12 такими же частицами, центры которых лежат в вершинах более крупного икосаэдра "второго порядка". Число атомов в таком "сверхкластере" может достигать 1014. Икосаэдричесий кластер имеет размер около 15 мкм. Этот продукт синтеза не может считаться монокристаллом, так как не имеет периодической кристаллической решетки. Малая плотность таких частиц при твердости, близкой к твердости алмаза, и высокая химическая стойкость делают их перспективными в создании новых материалов для техники.

Исключительностью икосаэдра среди Платоновых тел воспользовались вирусы. По-видимому, тут все дело в экономии — экономии генетической информации. Вы можете спросить: а почему обязательно правильный многогранник? И почему именно икосаэдр?  Вирусная частица должна весь обмен клетки-хозяина перевернуть вверх дном; она должна заставить зараженную клетку синтезировать многочисленные ферменты и другие молекулы, необходимые для синтеза новых вирусных частиц. Все эти ферменты должны быть закодированы в вирусной нуклеиновой кислоте. Но количество ее ограничено. Поэтому для кодирования белков собственной оболочки в нуклеиновой кислоте вируса оставлено совсем мало места. Что же делает вирус? Он просто использует много раз один и тот же участок нуклеиновой кислоты для синтеза большого числа стандартных молекул — строительных белков, объединяющихся в процессе автосборки вирусной частицы. В результате достигается максимальная экономия генетической информации. Остается добавить, что по законам математики для построения наиболее экономичным способом замкнутой оболочки из одинаковых элементов нужно сложить из них икосаэдр, который мы наблюдаем у вирусов.

Так «решают» вирусы сложнейшую (ее называют «изопиранной») задачу: найти тело наименьшей поверхности при заданном объеме и притом состоящее из одинаковых и тоже простейших фигур. Вирусы, мельчайшие из организмов, настолько простые, что до сих пор неясно — относить их к живой или неживой природе, — эти самые вирусы справились с геометрической проблемой, потребовавшей у людей более двух тысячелетий! Все так называемые «сферические вирусы», в том числе такой страшный, как вирус полиомиелита, представляют собой икосаэдры, а не сферы, как думали раньше.

Вирусы, построенные только из нуклеиновой кислоты и белка, могут походить на жесткую палочкообразную или гибкую нитевидную спираль, точнее на  правильный двадцатигранник, или икосаэдр. Есть вирусы, размножающиеся в клетках животных (позвоночных и беспозвоночных), другие облюбовали растения, третьи (их называют бактериофагами или просто фагами) паразитируют в микробах, но икосаэдрическая форма встречается у вирусов всех этих трех групп.

Вирус кошачьей панлейкопении (FPLV) принадлежит к семейству парвовирусов. Родственных возбудителей среди распространенных болезней человека нет. Вирус сферический (двадцатигранник - икосаэдр), мелкий, размер около 20 нм (0,00002 мм), простой по структуре, не имеет внешней оболочки; геном одна молекула однотяжевой ДНК с молекулярной массой около 2 млн. Вирус очень стабилен, может сохранять активность вне организма месяцы и годы.

Вирус гепатита В  - возбудитель гепатита В, основной представитель семейства гепадновирусов. Это семейство включает также гепатотропные вирусы гепатита сурков, сусликов, уток и белок. Вирус ГВ является ДНК-содержащим. Он представляет собой частицу диаметром 42-47 нм, состоит из ядра-нуклеоида, имеющего форму икосаэдра диаметром 28 нм, внутри которого находятся ДНК, концевой белок и фермент ДНК-полимераза.

Природа говорит языком математики; буквы этого языка - круги треугольники и другие математические фигуры.
Галилео Галилей


Тела Кеплера - Пуансона

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплер присвоил этой фигуре имя «стелла октангула» -«восьмиугольная звезда». Она встречается и в природе: это так называемый двойной кристалл. Мы вынуждены признать «стеллу октангулу» правильным многогранником: ведь все ее грани - правильные треугольники одинакового размера и все углы между ними равны!

Сакральная геометрия

Что же это - шестое Платоново тело?!
Нет, просто удавшаяся провокация. В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансона), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.
Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».
Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр, полученный впервые Иоганном Кеплером.
Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. А тут - геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Какой же это многогранник?! Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г—Р вовсе не равняется двойке.
Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.
Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники.
Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр» - построил французский геометр Луи Пуансон спустя   двести лет после кеплеровских звездчатых фигур.
Большой икосаэдр был впервые описан Луи Пуансон в 1809 году. И опять Кеплер, "увидев" большой звездчатый додекаэдр, честь открытия второй фигуры оставил Луи Пуансону. Эти фигуры также "наполовину" подчиняются формуле Эйлера.
На гравюре Маурица Эсхера "Порядок и хаос" звездчатый додекаэдр, символ математической красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей.

Красота звездчатых фигур находит на удивление мало места в нашей жизни: разве что светильники, да и то очень редко. Даже изготовители елочных украшений  не додумались сделать трехмерные звезды, а ими как раз и оказались бы эти многогранники.


 

Две лекции "Эволюция проектирования"

Кто помнит замечательную конструкцию под названием Парфенон, тот знает, что там нет прямых горизонталей. Все квази-горизонтали выгнуты вверх. Назвали это хитрым словом, долго интерпретировали. Зачем это сделано, до конца не ясно. Еще римляне говорили о том, что якобы для исправления оптической иллюзии провисания длинной прямой. Правда, никто не видел провисающие горизонтали. Но вопрос, который раньше не задавали, очень прост. А как это сделано? Представьте: 100-метровая плоскость, основание 100х30, которому придана двоякая кривизна (с обеих сторон). Стрела этой кривизны – 11 сантиметров по центру. Геометрическим построением это сделать вообще нельзя. Ни на чертеже (у вас циркуль не сработает), ни в натуре, потому что радиус, если его восстановить, окажется примерно 1150 метров. Геометрически простым способом (гвоздик, веревочка и т.д.) этого сделать нельзя. Но ведь это сделано!

Следовательно, должен был быть шаблон, с помощью которого можно было, протаскивая по уже выложенной каменной платформе, получать кривую и стесывать ее. Был ли кто-то в кругу людей, которые вместе проектировали Парфенон, кто уже мог это сделать? Были двое. Один – астроном Метон, который рассчитал перекладной календарь для Афин, другой – Анаксагор. Оба могли решить эту задачу восстановлением касательной и расчетом превышения касательной к точкам дуги. Доказательство только одно – это есть! Это создано в кружке, в котором обсуждается не только проект здания (Парфенон – не просто здание, Парфенон был еще знаком абсолютного торжества Афин в греческом мире). Это не здание, это символ афинской гегемонии в Морском союзе. Недаром половину этой компании афиняне изгнали за безбожие, подозревая не без оснований, что они нарушают верность старым богам.